[image: image1.jpg]

	Testing guide
	EI Toolkit

Phase: Implementation

Doc Version: 2.0

Testing Guide

Version:
2.0
November 2003

Testing

Definition/Scope

As with other software development projects, testing is an all-important set of activities to ensure the system meets the business requirements as documented and configured during the detailed requirements & design and build phases. Testing includes the configured core <Software Product> software and all development objects (e.g., reports, forms, enhancements, interfaces, data conversion). Additionally, testing verifies that the production environment and its technical components are stable and prepared for operational use. Functionality and system operation proven through successful execution of tests will drive system acceptance and overall sign-off. Information Assurance testing is not included in testing described in this document, but is performed at the conclusion of the system testing described here. IA personnel should participate in system testing in order to become familiar with the products and systems. Information assurance testing will be documented in the System Security Authorization Agreement (SSAA).

Different phases of testing will occur at various points during the project life cycle and must be carefully planned and managed based on a well-defined strategy. The primary components of a test effort focus on planning, execution, reporting and problem resolution as depicted in Figure 1.0. Testing is iterative and may require a return to business process design and custom development depending on the test problem resolution.

Figure 1.0 Test Process

Informal and formal testing should be performed. Business process teams will conduct informal testing during configuration when processes are prototyped and configuration options are reviewed. Developers will also conduct informal unit testing as the various enhancement, report, data conversion, and interface programs are developed. The major phases of testing normally include:

Figure 2.0 Major Test Phases

Key Decision Points/Factors

· Testing Scope – Determine the extent and formality of testing needed to provide confidence that business requirements are being satisfied, system components are integrated, and results are repeatable. How many phases or iterations of testing are needed? How complex are the configured processes and development objects? When is “Go Live” in relation to critical business cycles? Will unscripted testing be conducted? Decide on a schedule and milestones that allow for development and execution of robust testing, with all applicable system components, within reasonable cost parameters.
· Methodology - Establish the methodology (strategy, approach) early, as it will guide team assignments, specification development, process documentation, and preparation of test materials. This includes such items as procedures, templates, team responsibilities, organization involvement, and system “freeze.” Determine use of test tools and method of testing – automated and/or manual. Begin the acquisition process to ensure tools are configured and available for use in accordance with the test schedule.
· Test Readiness – Establish checkpoints to assess the readiness of the system and all related components (e.g., configuration, interfaces, enhancements, data conversions, reports, security, system clients). What are the critical points for monitoring readiness to begin testing? What are the entrance criteria (prerequisites) for each test phase? What is impact on the integrity of testing if 1) all components are not ready for unit test, end-to-end test? 2) external test beds for interfaces are not available or do not truly represent target production environment? What are the contingency plans or alternatives if test execution significantly exceeds schedule? Is the transport process in place to support system fixes to the test clients?
· Integration – Decide on the degree of integration of components for the Integration Test phase. Note that integration testing should be comprehensive and inclusive of all components associated with business transactional flow. For example, will test cycles require transactional testing to include converted records and new data? Will all development objects be incorporated into end-to-end test scenarios? Will there be a “dress rehearsal” of the cutover plan?
· Test Personnel - Identify who will be responsible for execution of tests. This influences workload of individual team members, participation of end users from the organization, and techniques for assuring the software works correctly and in accordance with business process design. Is it suitable for system integrator personnel to execute tests and assign pass/fail status?
· Sign-off - Determine the exit criteria for each phase of testing and whether a “sign-off” is needed. What constitutes acceptance? Who is responsible for accepting the test results? Is an independent evaluation or acceptance test phase required? How does sign-off affect the ability to move forward with the project plan?
· Configuration freeze – Decide on the point at which formal change control procedures will be invoked. Will configuration be “frozen” when entering integration testing in the Transition phase? What will be the approval process, transport chain, and transport schedule when making system changes during integration testing. What procedures will be in place to assure integrity of the system from the conclusion of each test phase to the next and from the end of integration testing to cutover and “Go Live?”
Steps and Products

Following the methodology phases, unit and functional testing will take place during the Build phase and integration and performance testing will be conducted during the Transition phase. The objective of each major area to be tested is described in Table 3.0. The test strategy should account for each of these areas to verify and validate the system meets functional and operational requirements before it is deployed.

Table 3.0 Test Objectives

	Area
	Objective

	Configuration
	Validate that the Business Process teams have configured <<Software Product>> according to defined business requirements

	Interfaces
	Ensure that all inbound and outbound interfaces move data between <<Software Product>> and Client source/legacy systems accurately and as scheduled

	Enhancements
	Ensure that enhancements to the system resolve the identified gaps between <<Software Product>> and Client business requirements

	Batch Processing
	Validate that the flow and dependencies within and between batch cycles comply with Client business requirements and processing window

	Reporting
	Ensure that reports satisfy users’ requirements for layout and contain accurate data

	Data Conversions
	Validate that all one-time conversions load data accurately and timely

	Security
	Ensure that <<Software Product>> security has been built to provide end users the necessary access to perform their job functions, while providing adequate segregation of duties and controls

	System Infrastructure
	Validate that the Technical Infrastructure components and procedures have been constructed to provide a stable and highly available production environment for operational use.

	Performance
	Measure and tune the expected business operations against a similar production environment

	Information Assurance
	Certification evaluation of the system is performed on the fully integrated and operational system to determine if it complies with the requirements stated in the SSAA and may be operated with an acceptable level of residual risk.

The DEV client will be used for execution of unit and functional tests; whereas, the QAS client is used for integration testing once all applicable transports from DEV have been completed. The goals for each stage of testing are identified below:

UNIT (Informal):

· Solidify baseline configuration for each transaction

· Verify all configuration moved from DEV

· Create prototype to validate system functions according to detailed requirements & design and business needs

· Test reports, interfaces, conversion, and enhancements independently

· Validate system infrastructure components

FUNCTIONAL (Formal or informal):

· Verify <<Software Product>> system functionality is configured correctly within a functional area (linking of transactions) through positive and negative tests

· Verify custom developed programs are developed according to design specifications

· Validate accuracy, completeness, and usability of Business Processes for end-user Training

· Verify roles (including Workplace, if available) allow correct access to transactions

INTEGRATION (Formal):

· Verify <<Software Product>> system configuration and evaluate design of all functional processes across modules in accordance with end to end scenarios through positive, negative, and unscripted tests

· Verify actual data conversion, interface programs, enhancements, reports, batch scheduling and overnight processing incorporated with testing of configuration

· Validate inbound interfaces for data accuracy and system processing and outbound interfaces for compatibility with legacy systems

· Validate Workplace Roles to confirm proper layout and correct transaction access and execution

PERFORMANCE TESTING (Formal, Informal):

· Measure system performance and response time while simulating production activity for <<Software Product>> transactions and interfaces

· Tune transactions to eliminate performance bottlenecks and confirm that the defined Service Level Agreement will be met

· Validate data integrity and estimated conversion runtimes through mock data conversions

Figure 4.0 illustrates the primary steps involved with testing the system – these are fundamentally the same as for any software implementation project. Additionally, most of the steps apply across all test phases with the main difference being in the formality of test development and conduct. Table 5.0 provides further details of each step and the associated deliverables.

Figure 4.0 Test Methodology

Table 5.0. Testing Steps and Products***

	Step
	Product

	1. Determine Test Strategy

· Identify objectives and scope of testing effort

· Determine/select test tools to be used and their application to the test phases and strategy

· Determine physical resource (e.g., “war room”) requirements

· Ascertain the budget and time restraints (“when”)

· Assess the availability and qualification criteria of potential
testers from the implementation team and organization at large

· Define approach for each test phase in terms of preparation,
execution, problem reporting, status reporting, and sign-off

· Identify membership for the <<Software Product>> Test Team

· Establish and communicate test documentation standards

· Prepare a Test Work Plan that includes the test schedule,
prerequisites, responsibilities, timelines, and dependencies.
Integrate it with the overall implementation plan.

	· Test Strategy Document

· Test Work Plan

	2. Obtain Test Resources

Based on lead-time requirements, physical and personnel test resources will be acquired at different times. Establish the dates in the Test Work Plan.

· Acquire or adapt existing test tool set. Tools should provide means to establish test cases with step-by-step procedures, create scenarios, associate supporting data sheets, record results, and provide for automated testing. Obtain as early as possible.

· Commit implementation team members who will be responsible for planning and executing tests, and following up on problem reports

· Commit identified resources from the organization who will be part of the end-user test team

· Schedule training on all test tools and documentation standards

· Ready the test facility to ensure adequate number of workstations, phones, and access to all required software and system peripherals (e.g., printers)

· Periodically evaluate workload of each business process team and other critical implementation team members to ensure supporting products (e.g., configuration, business processes and PDDs) are complete and available

· Execute MOAs with applicable organizations for external interfaces to obtain prepared test bed environments and means to transfer data to/from <<Software Product>>
	· Test Tool Acquisition List

· Test Training Course

· Test War Room Facility Requirement Checklist

· External Test Bed Requirement Checklist

	3. Develop Test Plans
Collect source materials (e.g., Business Requirements Matrix, process flows, Business processes, PDDs)

· Create plans that list what will be tested (e.g., by transaction, process, functional area, development object). A simple spreadsheet or table that identifies the test, special conditions, data or prerequisite conditions, and estimated schedule is very useful. Include:

·
- Positive tests

- Negative tests

- BPP verification

- PDD verification

- Security verification

· Perform a four-way comparison of test plan, to configured <<Software Product>> transactions, business processes and PDDs. Validate that processes are adequately represented in the test plan and that there are no “disconnects” between <<Software Product>> transactions and business processes. Tie the test plan to the Business Requirements Matrix developed during Detailed requirements & design phase.

· Define the test plan in the functional and technical specifications for each development object
· Create an Integration Testing Matrix and schedule, which is the foundation of a detailed Integration Test plan. This will be used to produce pre-execution deliverable, coordinate the execution of each test, track the progress of testing, and provide status report to project management.
· Define number of iterations and cycles for integration testing. Example of cycles include:
· - Master Data

- Data Conversions

- Daily Transactions

- Batch Processing

- Month-End/Periodic Transactions

 - Reports and Forms

· Build end-to-end test scenarios that mirror the documented business processes and process chain created in the Detailed Requirements and Design Phase. Mini scenarios should be built for functional tests; extensive end-to-end scenarios will be designed for integration tests.
· Build Integration activity tests that focus on a critical specific business function or cycle and are not conducive for inclusion in the overall end-to-end scenarios

· For performance testing, identify transactions that represent the highest volume, as well as those that are potential bottlenecks

	· Test Plan Template

· Unit Test Plan (for each business process)

· Unit Test Plan (for each development object)

· Functional Test Plan

· Integration Testing Matrix

· Integration Test Scenarios

· Consolidated Integration Test Plan

· Updated Business Requirements Matrix

· Performance Test Plan

	4. Develop Test Cases and Procedures

· Assign business process and test team members for test case development

· Establish templates and/or guidelines for test case format and content

· Establish a tracking device to monitor progress of test case development

· Write test cases, providing a description of condition to be tested, steps to be executed, expected results, and the method of verification (Note: test tools may provide mechanism for creating test cases, attaching data sheets, identifying expected results, and combining into test scenarios/sets)

· Conduct reviews (quality, editorial, technical) of test cases

· Create data sheets to detail different variants or load of multiple
transactions for the test

· Define supporting data needed from other <<Software Product>> transactions/
processes and communicate to applicable test case developer

· Define data requirements, timing, and verification for interfaces
to/from <<Software Product>>. Define for both <<Software Product>> and the interfacing system.

· Define procedures for testing of data conversion programs,
including measurement of run-times, validation of results, and
capture of expected fall-out or data cleansing.

· Define procedures for verifying accurate and complete
processing of transactions between <<Software Product>> and third party tools

· Develop scripts to capture and load <<Software Product>> transactional data if test
tool will be used for automated load or replay of transactions.
	· Test Team assignments

· Test Case templates/ guidelines

· Test Cases w/expected results

· Data sheets

· Supporting Data Requirements Lists

· Development object test procedures

· Automated test load, transaction scripts

	5. Set-up Test Environment

· Configure test tool, as required and establish test tool user
accounts

· Establish transaction security roles and test user accounts for
each role

· For integration testing,

- Verify test client(s) are ready with configuration transports,
 manual configuration, security, applied software vendor fixes

- “Freeze” the configuration before integration testing starts

- Verify all development objects have been unit tested and are
 ready for incorporation in integration test execution

· Define and communicate change control procedures for implementation of configuration and/or software changes once testing has started

· Create file structures/directories to support interface testing and batch process

· Publish and load supporting data (e.g., master data, sales orders, purchase orders, general ledger accounts, organizational structure) for the tests

	· Configured test tools

· User accounts established

· Transport List

· Change Control Procedures

	6. Execute Tests

· Assign responsibility for execution of tests for each phase
· Generate detailed schedule and sequence of test cycles, scenarios
and cases
· Verify test environments for <<Software Product>> and interfacing systems are ready
· Verify conversion data loads, batch scheduler, performance load
data, and security profiles are ready
· Generate checklist to aid unit and functional testers in awareness
of what should be tested (see Appendix)
· Run tests in accordance with test plan (e.g., unit test spreadsheet,
detailed test case, performance test plan, and functional and
technical specifications) and record pass/fail status
· Compare actual results to expected results and record problems
encountered in test problem reports (TPRs)
· Monitor progress of test execution
· Conduct periodic status briefings to report progress, highlight
test problems, and verify readiness of all components to be
tested, and review schedule impacts

	· Tester Assignments

· Test Case/Scenario Schedule

· Unit/Functional Test Checklist

· Test Scenarios and Cases

· Actual Results

· TPRs

· Execution Status Reports

	7. Track and Resolve Problem Reports

Note: Correction of problems will occur iteratively throughout the test phase
· Establish criteria and priority categorization for creation of TPRs
· Establish tracking mechanism (e.g., test tool, spreadsheet) for TPRs. For example, unit test may use a spreadsheet, while integration test uses a test tool.
· Establish reporting methods, frequency, and escalation process
· Assign responsibility for resolution of TPR
· Investigate and correct software problem. This may require a change to the business process design, programming fix for a custom development object, filing of a customer message and application of Software vendor fixes, waiver request, configuration change, or a change to the test case.
· Prepare and execute transports in accordance with change control procedures
· Update functional and/or technical specifications as needed
· Record resolution and identify any specific retest or regression
test requirements
· Conduct periodic review meetings to assess progress of TPR resolution and identify critical or showstopper problems
· Notify other team members to modify Business processes, PDDs, Training Materials, or Change Management communications, as applicable

	· Problem Reporting Strategy

· TPR Tracking Tool

· TPR Resolution

· Corrected Product

· TPR Status Briefings

· Retest/Regression Test Criteria

· Updated Documentation (e.g., Training, Business processes, PDDs, Functional Specifications, Technical Specifications)

	8. Execute Re-Tests and Regression Tests

· Obtain status of test problem reports

· Determine re-test requirements, including supporting data, re-
run of prerequisite tests

· Determine regression test requirements to verify software fixes
or new system changes have not impacted other transaction
processes

· Develop new test cases, as appropriate

· Determine environment in which to run test (e.g., DEV, then
QAS)

· Verify transports/Software vendor fixes have been completed, as
appropriate

· Assign personnel to execute tests

· Execute tests in accordance with test plan

· Record and evaluate results

· If test passed, promote software fix/change to target client for
further testing or closure of issue in production; otherwise,
record issue and wait for re-test
	· Test Problem Report

· Transport Listing

· Retest/Regression Test Plan

· Test Cases

· Test Results

	9. Support Third Party Test Assessment

Prior to “Go Live”, an independent evaluation may be required
by
an assigned third party to verify designated requirements, such
as
the Federal Financial Management Regulations (FFMR), are
being met. The evaluation may be limited to a review of test
results and other project documentation or may require actual
execution of tests by the third party team.

· Obtain the agenda, scope, and methodology that the third party team will use to perform the assessment
· Establish requirements for data capture during the test planning and execution processes
· Gather pertinent data to address assessment requirements
· Map <<Software Product>> design and test results to assessment requirements (e.g., FFMR)
· Prepare assessment package
· Prepare demonstrations of software capability and briefings on such areas as methodologies, test execution results, outstanding issues, and contingency plans
	· Third Party Assessment plan

· Assessment package with Supporting data, test results

· System demonstration

· Assessment Requirements mapping

	10. Obtain Test Sign-off

· Establish sign-off procedures that designate organizational responsibility for sign-off (who), criteria (what, e.g., no showstopper or critical priority TPRs), milestones or test events (when), and mechanism (e.g., test review) (how).
· Conduct periodic status meetings or phase exit briefs with appropriate personnel responsible for sign-off
· Identify outstanding issues and alternatives that affect the next phase of testing or have implications for “Go Live”
	· Test Status Briefings

· Sign-off Sheet

· Issues List

	11. Support Ongoing Test Activities

· Establish a Test Strategy and Plan for post Go-Live releases,
including testing of software fixes, change requests, and new
development

· Assign responsibility for management of ongoing test activities

· Develop repeatable test scenarios and cases for regression
testing

· Maintain test plans and execution statistics

· Establish methods to keep test materials current and accurate
IAW system changes, enhancements, upgrades, and added
functionality
	· Sustainment Test Strategy

· Release Test Cases and Scenarios

· Release Test Results

Important Dependencies

	Business Process Design
	The business processes detailed from the integrated business process model are the basis for those requirements to be tested. Test scenarios should be developed from the process model and test plans/procedures (steps and expected results) derived from the requirements matrix and functional specifications. Documented Business Processes, which translate into end user work instructions, will be validated through unit test execution. Design changes will be carried through to testing and test results may conversely affect process design.

	Configuration & Development
	Testing verifies that the products of Configuration and Development activities meet the business requirements. Test plans need to include configured business processes, as well as all development objects. Delays in completion of interface programs, enhancements, conversion programs, and custom reports can impact the ability to fully execute integration testing.

	Technical Environment
	The DEV, QAS, and TST (optional) Clients are established and maintained as part of the overall schema of clients and servers that comprise the system. These Clients must be ready with transport procedures in place to support all of the testing activities.

	Training
	Planning and delivery of end-user training can be directly affected by test execution. Frequently, training preparation and testing are concurrent processes; and in some cases, schedule slips force the actual delivery of training to occur at the same time as integration testing. Testing results can influence materials development as well as the ability to deliver the courses uninterrupted by system fixes. Project management must consider schedule implications when determining or modifying the overall plan. In addition, the Testing Team needs to involve the Training Team in the review and resolution of software trouble reports generated during test execution.

	Security
	The Security Team configures the <<Software Product>> roles and establishes the testing user accounts to allow <Software Product> transactions to be executed in each Client. In addition, the Security Team works with the Test Team to resolve user authorization errors encountered during testing.

	Cutover
	Cutover relies on completion of mock conversion tests. Mock conversion testing is not required, but is highly recommended for verifying correct conversion of data and benchmarking the sequence and duration of conversion programs. Although some activities may be initiated early, the cutover date should be dependent on successful completion of integration testing.

	Other Organizations/ Systems (Interfaces)
	Interface testing requires coordination with the legacy system managers for test bed availability, development of interface files, test execution, and verification of test results. These legacy systems may exist within or outside the implementing organization (e.g., DFAS systems). Business Process and Application Team members need to define the scenarios, data, and availability requirements to ensure test schedules can be met.

Resource Considerations

Resources connected with the testing effort will largely depend on the overall test strategy. The workload of Business Process and Application Development team members will include unit and functional testing during the Build phase. The Transition phase will see an inclusion of additional resources (personnel and other) from the organization.

Human Resources

· Test Coordination Team. A team of project personnel should be dedicated to the test phase planning and coordination and execution tracking and reporting. The size of the project will influence the number of personnel needed for this effort. A minimum of two to three personnel should be involved to cover the planning, day-to-day activities, and test tool management. While the test strategy is developed early in the project, the coordination team should be in place at midpoint of the Build phase.

· Unit/Functional Test “Team”. Business Process and Application Development team personnel will be primarily responsible for execution of these tests. This phase of testing is typically informal and iterative as objects are developed and configuration is prototyped. Each team should assign responsibility to one or more of its members to keep track of test execution against the business requirements and to follow-up on problem reports. Workload for each team needs to be evaluated regularly to ensure the required level of testing can be met within the given schedule.

· Integration Test Team. This test team will be a blend of resources from within the implementation team and the organization at large. Designated representatives from each business process team will be responsible for development of test scenarios, test procedures, and supporting data. They will also assist during execution to monitor scenarios and resolve test problem reports. Mini-teams will be formed to include subject matter experts (SMEs), super-users, and other operational personnel to perform the actual test execution -- they must be available during the planned testing schedule. Technical team resources will support transports, batch jobs, interfaces, and performance testing. Security team should be on-hand during execution to resolve user authorizations errors.

· Process Owners. In accordance with the project strategy, process owners may be given the responsibility for “sign-off” or acceptance of test results as a pre-requisite for cutover and “Go Live.”

· External Organization personnel. Memorandums of Agreement (MOAs) will be generated to commit resources from other organizations for the testing of interfaces between <Software Product> and external systems. Arrangements must be made to ensure availability of personnel to support processing of test data between the systems and for prompt correction of errors.

Facility and Equipment Resources

· Test “War room”. A separate room that centralizes the testing activities for integration testing is recommended. Computer workstations, printers, white boards, and projection devices should be installed to support test planning, execution, and team status meetings.
Software Resources

· Test Tools. Project management may elect to use software test tools. These tools provide for development of test cases and scenarios, manual or automated execution, and recording and reporting of test results. Acquisition of the tool should occur early enough to verify its capabilities, set up the environment, and train personnel in its use for the project.

· External Test Beds. Access to and set-up of test beds to support interface testing needs to be part of the signed MOAs with the applicable organizations. Readiness of the test beds needs to be included in the testing work plan schedule.

Lessons Learned

· Test Planning. Each phase of testing should be planned in accordance with the strategy in terms of schedule, content, and responsibilities. Preparation should be made to properly staff with appropriate skill levels, delegate tasks, and communicate templates and procedures. Specific planning should actually begin as early as Detailed requirements & design phase when business process chains are identified and functional specifications are developed. No matter how formal, test plans and resultant scripts should relate to each business process and custom development objects. A comprehensive integration test plan should be developed that links the business processes and system components into detailed end-to-end and specific functional scenarios. When planning test execution, give careful consideration to the training schedule and change control procedures for client updates.

· Disciplined Approach. The test strategy should require that all phases of testing (unit, functional, integration, performance, regression) follow a disciplined approach. Discipline needs to be applied regardless of whether the test phase is formal, informal, or completely unscripted. Discipline is achieved through proper scheduling, understanding of responsibilities, use of templates and standard procedures, training, problem report tracking, government “ownership” of the tests, and change control procedures. Remember that the objective of testing is to verify that the system works and meets the business and operational (performance) requirements. Define the criteria for pass and fail and any acceptance error tolerances. Avoid the temptation to rush through test execution by using undocumented workarounds or sidestepping of issues just to meet a schedule.
· Robust Testing. Many operational problems after “Go Live” result from insufficient testing of custom software developments and inadequate testing of various business scenarios with unrealistic data. Because available <Software Product> functionality far exceeds that which is implemented, it is impossible to test every condition or keystroke that may occur once the system is fielded. In addition, when interfacing to external systems and third party products, other variables outside the control of the organization can influence the results. To maximize the effectiveness of training, all phases of testing should be robust and comprehensive enough to give the organization the confidence that the business enterprise will not be disrupted with the deployment of the new system. This can be achieved through:

· Thorough testing of configuration and custom development objects including reports, interfaces (complete cycle to/from external or third party system), data conversions, and enhancements

· Careful analysis of results

· Logically constructed and documented scenarios

· Positive and negative (designed to fail) tests, with multiple conditions

· Script development by functional experts

· Analysis and communication of impacts of business process and test scenario changes to other teams

· Use of realistic data in defined data sets; use of converted data in test scripts

· Results Analysis. Each test case needs to identify the full set of expected results in all <Software Product> modules impacted by a transaction. For example, a test of requisition creation may update several modules to record the requisition, update funds balances for the cost target, and update the special ledger for the commitment transaction. A common problem in evaluating test results is to focus on the immediate result (e.g., requisition record created) and not to trace it through the system, including reports (<Software Product> and/or custom). Time spent in thorough analysis during testing will save the team from resolving many costly problems in a deployed system.
· Use of Tools. Testing tools can provide the project with an efficient means of preparing and executing tests during implementation and into sustainment. Serious consideration should be given to acquiring test tools that provide for automated execution (e.g., playback), transaction loading, test case development, execution, problem tracking, and reporting. Acquisition should occur early enough to verify the tool performs as needed and to train personnel prior to it being used.
· Test Training. Do not assume that everyone assigned responsibilities for testing knows how to test. Train members on the test strategy, process, and procedures. Conduct sessions on the fundamentals of writing good test cases, documenting expected results, and proper execution of tests. Training should emphasize the following points: 1) Someone unfamiliar with the function should be able to run the test, 2) Expected results and means to verify results should be clearly delineated, 3) Test data should depict “real life”, 4) Test plan should represent the blueprinted process, and 5) Test cases should trace back to the business requirements.
· Integration. Integration testing, which verifies that system processes and components work together, is a must. All individual pieces should be working and ready (as verified through unit and functional testing) before integration testing begins. Allocate time in the schedule to allow for multiple iterations of testing, error correction, and re-test. Create an integrated test plan that addresses the touch points of processes within <Software Product> and external systems. Define, publish, and build data sets for all modules to use.

· Software and Business Process Inventory. Before actual cutover, all of the components (e.g., business processes, development objects) need to be tested and verified. Maintain a list of all that will comprise the system to be deployed. Keep track of development and unit test progress and associate each one to the integrated test scenarios. This will serve as a tool to trace from requirements through design to testing. Monitoring development will enable the management team to evaluate impacts to test plans and implement risk mitigation measures to avoid schedule slippages.

Plan Tests

Create Tests

Execute Tests

Requirements

Identify Errors

Resolve Errors

Execute Retests

Report Status

UNIT

Individual

Components or Module

FUNCTIONAL

Full Modular

Testing

INTEGRATION

Cross Modular

Testing with all Development & Technical Components

PERFORMANCE

Stress and Volume Testing

4.

Develop Test Cases , Procedures

2.

Obtain Test Resources	

1.

Determine Test Strategy	

3.

Develop Test Plans

5.

Set-up Test Environment

6.

Execute Tests

7.

Track, Resolve Problem Reports

8.

Execute Re-Tests, Regression Tests

11.

Support On-Going Test Activities

9.

Support Third Party Test Assessment

10.

Obtain Test Sign-off

PAGE

Page 18 of 18

